Two-Way Grouping by One-Way Topic Models
نویسندگان
چکیده
We tackle the problem of new users or documents in collaborative filtering. Generalization over users by grouping them into user groups is beneficial when a rating is to be predicted for a relatively new document having only few observed ratings. The same applies for documents in the case of new users. We have shown earlier that if there are both new users and new documents, two-way generalization becomes necessary, and introduced a probabilistic Two-Way Model for the task. The task of finding a two-way grouping is a non-trivial combinatorial problem, which makes it computationally difficult. We suggest approximating the Two-Way Model with two URP models; one that groups users and one that groups documents. Their two predictions are combined using a product of experts model. This combination of two one-way models achieves even better prediction performance than the original Two-Way Model.
منابع مشابه
The Effect of Topic Bias on the Writing Proficiency of Extrovert/Introvert EFL Learners
This study was intended to find out any possible effect of topic bias on the writing proficiency of Iranian extrovert/introvert EFL learners at high/low writing proficiency levels. One hundred participants chosen from among 150 adult language learners on the basis of their personality type (extrovert/introvert) and writing proficiency (high/low) took part in this study. They were arranged into ...
متن کاملComparing two testing procedures in unbalanced two-way ANOVA models under heteroscedasticity: Approximate degree of freedom and parametric bootstrap approach
The classic F-test is usually used for testing the effects of factors in homoscedastic two-way ANOVA models. However, the assumption of equal cell variances is usually violated in practice. In recent years, several test procedures have been proposed for testing the effects of factors. In this paper, the two methods that are approximate degree of freedom (ADF) and parametric bootstr...
متن کاملیک مدل موضوعی احتمالاتی مبتنی بر روابط محلّی واژگان در پنجرههای همپوشان
A probabilistic topic model assumes that documents are generated through a process involving topics and then tries to reverse this process, given the documents and extract topics. A topic is usually assumed to be a distribution over words. LDA is one of the first and most popular topic models introduced so far. In the document generation process assumed by LDA, each document is a distribution o...
متن کاملMulti-granulation fuzzy probabilistic rough sets and their corresponding three-way decisions over two universes
This article introduces a general framework of multi-granulation fuzzy probabilistic roughsets (MG-FPRSs) models in multi-granulation fuzzy probabilistic approximation space over twouniverses. Four types of MG-FPRSs are established, by the four different conditional probabilitiesof fuzzy event. For different constraints on parameters, we obtain four kinds of each type MG-FPRSs...
متن کاملTwo-way Gaussian mixture models for high dimensional classification
Mixture discriminant analysis (MDA) has gained applications in a wide range of engineering and scientific fields. In this paper, under the paradigm of MDA, we propose a two-way Gaussian mixture model for classifying high dimensional data. This model regularizes the mixture component means by dividing variables into groups and then constraining the parameters for the variables in the same group ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009